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Thanks especially to Jonathan Marchini and Pier Palamara for supervising my DPhil and introducing me
to this research background. So that I can refer to them by shorthand, textbooks that have helped me in
my learning are:

• “Casella / Berger”: Statistical Inference by George Casella and Roger L. Berger [1]

• “Wasserman”: All of Statistics by Larry Wasserman [2]

• “ESL”: The Elements of Statistical Learning, Second Edition by Trevor Hastie, Robert Tibshirani,
and Jerome Friedman [3]

• “Bishop”: Pattern Recognition and Machine Learning by Christopher M. Bishop [4]

• “Murphy”: Machine Learning by Kevin P. Murphy [5]

Note 1: All likelihoods / log-likelihoods are correct up to a constant. Note 2: All references are clickable,
and most PDF viewers have shortcuts to navigate back from links (Command + [ on Preview).

1 Fundamentals

1.1 Linear Algebra

Trace trick, idempotent / projection operators, pseudo-inverse, Schur complement. Derivatives of matrix
expressions. Positive (semi-)definite matrices, Cholesky decomposition, matrix square root.

For vectors u and v, we define

u · v = uT v,

|u| =
√
u · u ≥ 0.

Then

u · v = |u||v| cos(θ), (1)

where θ is the angle between vectors u and v.
For any real matrix X,

rank(XTX) = rank(XXT ) = rank(X) = rank(XT ). (2)

Matrix inversion lemma / Sherman-Morrison-Woodbury formula. For A n by n, C k by k, U n by k, and
V k by n, all of maximum rank,

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1. (3)

Note that the first complicated inverse is of an n by n matrix, whereas the second complicated inverse is of
a k by k matrix.

TODO: add Bishop 2.76, the matrix inversion formula, which also introduces the Schur complement
(Bishop 2.77). See https://en.wikipedia.org/wiki/Block_matrix#Block_matrix_inversion for how
the matrix inversion formula / lemma relate.

1.2 Probability

E(X) = E(E(X|Y )) (4)

cov(Y ) = E(cov(Y |X)) + cov(E(Y |X)) (5)
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1.2.1 Multivariate Normal

Density:

N (x|µ,Σ) =
1√
|2πΣ|

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(6)

Affine transformation. If x ∼ N (µ,Σ), then

Ax+ b ∼ N (Aµ+ b, AΣAT ). (7)

Marginal and conditional. Let

x =

[
x1
x2

]
, µ =

[
µ1

µ2

]
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]
, Λ = Σ−1 =

[
Λ11 Λ12

Λ21 Λ22

]
,

then (Bishop 2.81-2.82, 2.91, 2.96-2.98)

p(x1) = N (x1|µ1,Σ11) (8)

= N (x1|µ1, (Λ11 − Λ12Λ−122 Λ21)−1), (9)

p(x1|x2) = N (x1|µ1 + Σ12Σ−122 (x2 − µ2),Σ11 − Σ12Σ−122 Σ21) (10)

= N (x1|µ1 − Λ−111 Λ12(x2 − µ2),Λ−111 ). (11)

Bayesian updates. If

p(x) = N (x|µ,Σ),

p(y|x) = N (y|Ax+ b,Π),

then (Bishop 2.113-2.117)

p(y) = N (y|Aµ+ b,Π +AΣAT ), (12)

p(x|y) = N (x|Ξ{ATΠ−1(y − b) + Σ−1µ},Ξ), (13)

where

Ξ = (Σ−1 +ATΠ−1A)−1. (14)

Uncorrelated ⇔ independent. If x1 and x2 are univariate normal random variables, then cov(x1, x2) = 0 ⇔
x1, x2 independent.

1.2.2 Derived Distributions: Definitions

If X1, . . . , Xn
i.i.d.∼ N (0, 1), then:

n∑
i=1

X2
i ∼ χ2

n. (15)

If U ∼ N (0, 1) and V ∼ χ2
p are independent, then

U√
V/p

∼ tp. (16)

If U ∼ χ2
p and V ∼ χ2

q are independent, then

U/p

V/q
∼ Fp,q. (17)
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1.2.3 Derived Distributions: Properties

1.2.3.1 χ2 distribution

The χ2
n distribution has mean n and variance 2n. Also, χ2

n = Gamma(n/2, 2) and χ2
2 = Gamma(1, 2) =

Expo(1/2).
Note that the definition of χ2

n in (15) can be equivalently stated as follows. If X ∼ Nn(0, In), then
XTX ∼ χ2

n. This is because for normal random variables, uncorrelated ⇔ independent. In fact, we have
the following more general result. If X ∼ Nn(µ,Σ), and Σ is positive definite, then let LLT = Σ be the
Cholesky decomposition of Σ. We can apply a transformation to X to get identity covariance, using

Y = L−1(X − µ) ∼ Nn(0, L−1ΣL−T ) = Nn(0, In),

where we have used (7). Thus

(X − µ)TΣ−1(X − µ) = (X − µ)TL−TL−1(X − µ) = Y TY ∼ χ2
n. (18)

There is also the special case where X ∼ Nn(µ,Σ) but Σ is positive semi-definite and not of full rank.
Then X − µ will always lie in a strict subspace of Rn; this is called the degenerate case of the multivariate
normal. If the rank of Σ is k < n, then

(X − µ)TΣ+(X − µ) ∼ χ2
k, (19)

where Σ+ is the pseudo-inverse. The proof is omitted for now.

1.2.3.2 t distribution

The tp distribution has mean 0 for p > 1 and variance p/(p − 2) for p > 2; otherwise these moments are
undefined. t1 = Cauchy(0, 1), and as p→∞, tp → N (0, 1).

1.2.3.3 F distribution

The Fp,q distribution has mean q/(q − 2) for q > 2 and variance 2q2(p+ q − 2)/(p(q − 2)2(q − 4)) for q > 4;
otherwise these moments are undefined. Casella / Berger 5.3.8 gives:

1. If X ∼ Fp,q, then 1/X ∼ Fq,p.

2. If X ∼ tq, then X2 ∼ F1,q.

3. If X ∼ Fp,q, then (p/q)X
1+(p/q)X ∼ Beta(p/2, q/2).

The first two properties are easy to prove based on the definitions of tq and Fp,q.

1.3 Inference for a Normal Sample

1.3.1 Sampling from the Univariate Normal

Casella / Berger 5.2.2, 5.2.3, 5.2.6. For a random (i.e. i.i.d.) sample X1, . . . , Xn from a population with
mean µ and variance σ2 <∞, define

X̄ =
1

n

n∑
i=1

Xi, S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2, S =
√
S2, (20)

to be the sample mean, sample variance, and sample standard deviation. Then E(X̄) = µ, Var(X̄) = σ2/n,
and E(S2) = σ2.

Casella / Berger 5.3.1. (See Section 4.1 for a proof.) If furthermore the sample is i.i.d. from N (µ, σ2),
then

1. X̄ ∼ N (µ, σ2/n).
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2. (n− 1)S2/σ2 ∼ χ2
n−1.

3. X̄ and S2 are independent.

Casella / Berger 5.3.4. If X1, . . . , Xn
i.i.d.∼ N (µ, σ2), then

X̄ − µ
σ/
√
n
∼ N (0, 1), (21)

X̄ − µ
S/
√
n

=
(X̄ − µ)/(σ/

√
n)√

S2/σ2
∼ tn−1, (22)

where we have used Casella / Berger 5.3.1 and (16).

Casella / Berger 5.3.6. If X1, . . . , Xn
i.i.d.∼ N (µX , σ

2
X) and Y1, . . . , Ym

i.i.d.∼ N (µY , σ
2
Y ) independently, then

S2
X/σ

2
X

S2
Y /σ

2
Y

∼ Fn−1,m−1, (23)

where we have used Casella / Berger 5.3.1 and (17).

1.3.2 Sampling from the Multivariate Normal

Now let X1, . . . , Xn
i.i.d.∼ Np(µ,Σ) be vectors in Rp, where n > p. Define

X̄ =
1

n

n∑
i=1

Xi, S =
1

n− 1

n∑
i=1

(Xi − X̄)(Xi − X̄)T , (24)

to be the sample mean and sample covariance. Then:

X̄ ∼ Np(µ,Σ/n), (25)

E(S) = Σ, (26)

(X̄ − µ)T (Σ/n)−1(X̄ − µ) ∼ χ2
p, (27)

(X̄ − µ)T (S/n)−1(X̄ − µ) ∼ T 2
p,n−1 =

p(n− 1)

n− p
Fp,n−p. (28)

The distribution T 2
p,n−1 is known as Hotelling’s T -squared. More can be found on Wikipedia. There is also

a Wilks’ lambda distribution that I think does two-sample covariance comparisons. Notice that (27) follows
from (25) using (18).

2 Standard Linear Model: Fixed Effects

Throughout, we consider N samples and M features in our model, possibly including the constant 1 as a
feature. We seek to model a single output yn for each sample, based on a feature vector xn of size M .
We can aggregate this data into a column vector Y and an N by M matrix X. For now we assume no
standardization, though in GWAS it is common to standardize Y and the columns of X to have mean 0 and
variance 1.

The linear regression model assumes effects β contained in a column vector of size M , with

Y = Xβ + ε (29)

We introduce assumptions on the errors ε: εn
i.i.d.∼ N (0, σ2), or in other words, ε ∼ N (0, σ2IN ). Then the

log-likelihood given X and Y becomes:

l(β, σ2|X,Y ) = − 1

2σ2
(Y −Xβ)T (Y −Xβ)− N

2
lnσ2 (30)
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To perform point estimation on β, we use maximum likelihood to get

β̂ = (XTX)−1XTY (31)

so long as XTX has full rank. Define ε̂ = Y −Xβ̂. Then maximum likelihood of σ2 yields

σ̂2
MLE =

ε̂T ε̂

N
=
RSS

N
.

Using restricted maximum likelihood instead yields (details in Section 4.2)

σ̂2 =
RSS

N −M
. (32)

This is an unbiased estimator, and will be used instead from now on.

2.1 Tests of Significance

Since ε ∼ N (0, σ2IN ), and

β̂ = (XTX)−1XTY

= (XTX)−1XT (Xβ + ε)

= β + (XTX)−1XT ε,

we have by (7) that

β̂ ∼ N (β, (XTX)−1XTσ2IN ((XTX)−1XT )T ) (33)

= N (β, σ2(XTX)−1). (34)

Let A−1ij denote the ij-th entry of the inverse of matrix A, rather than the inverse of the ij-th entry. Then
marginally,

β̂i ∼ N (βi, σ
2(XTX)−1ii ), (35)

so β̂i is an unbiased estimator with standard error

se(β̂i) =

√
σ2(XTX)−1ii . (36)

Now we need some magic telling us the distribution of σ̂2 and saying it is independent of β̂. Enter a
generalized version of Casella / Berger 11.3.3! This says:

(N −M)σ̂2

σ2
∼ χ2

N−M (37)

and σ̂2 is independent of β̂. (A proof is in Section 4.2.) From this, we define

ŝe(β̂i) =

√
σ̂2(XTX)−1ii (38)

and derive a t-statistic as:

β̂i − βi
se(β̂i)

∼ N (0, 1), (39)

β̂i − βi
ŝe(β̂i)

=
(β̂i − βi)/se(β̂i)√

σ̂2/σ2
∼ tN−M , (40)

where we have used Casella / Berger 11.3.3 and (16). From here we obtain the t test for testing whether the
coefficient βi is significant. When N −M > 30, we can consider making a normal approximation.
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2.1.1 Example: Redundant Features

If we have two features in our data matrix that are redundant, we should expect some problems of identifi-
ability. The jth feature is given by the column vector X·,j . If X·,j = X·,k with j 6= k, then XTX will not

be full rank and it is not possible to form β̂ according to (31). Similarly, if M > N , we will suffer from an
undeterdetermined system and XTX will also not be full rank. ((2) is useful.)

But for now, let’s assume M ≤ N , and that we have two features X·,j and X·,k that are not identical,
but very close. Now let’s see what happens to the matrix (XTX)−1. To really simplify things, let’s write:

XTX =

 1 1− ε 0
1− ε 1 0

0 0 1

 . (41)

Here the redundant features are 1 and 2. All three components have norm 1, but features 1 and 2 are both
orthogonal to feature 3, while features 1 and 2 have a very small angle of offset that creates the 1− ε term.
(Remember that the dot product can be written using a cosine, as in (1).) Explicitly, we might have:

X =

 180
181

180
181 0

0 0 1
19
181 − 19

181 0

 , XTX =

 1 0.978 0
0.978 1 0

0 0 1

 . (42)

Using CoCalc, I get a symbolic inverse of

(XTX)−1 =

 1
1−(1−ε)2

ε−1
1−(1−ε)2 0

ε−1
1−(1−ε)2

1
1−(1−ε)2 0

0 0 1

 ≈
 (2ε)−1 −(2ε)−1 0
−(2ε)−1 (2ε)−1 0

0 0 1

 .
Numerically evaluating the inverse gives

(XTX)−1 =

 22.9 −22.4 0
−22.4 22.9 0

0 0 1

 .
We can deduce first of all that components 1 and 2 of β̂ will have a high standard error, based on the term
(XTX)−1ii of (38) being large. Second, the terms β̂1 and β̂2 have a correlation of almost -1 (using (34)),
which makes sense since they are redundant features.

Of course, redundancy doesn’t need to just come from a set of two features, it can also be from a wider
set. For instance, you constructed an extra feature for your linear regression which is the average of some
other features. Uh-oh!

2.2 Confidence Intervals

2.3 Approximate Testing with Wald / LRT

3 Linear Mixed Model Part 1: Model Setup

From the fixed effects model (29), we can add in random effects which correspond to the other SNPs used
to build the kinship matrix or genomic relatedness matrix (GRM). Let the SNPs be given by an N by P
matrix Z. The random effects vector b can then be a column vector of size P , and we have

Y = Xβ + Zb+ ε (43)

We let ε ∼ N (0, σ2
eIN ), but before we place a prior on b, the random effects, we choose to standardize Z so

that each column has:
E(Z·,i) = 0, ZT·,iZ·,i = P.

Alternatively we could keep Z as-is and rewrite our prior on b, but that is more complicated. After this
standardization, the common prior on b is b ∼ N (0, (σ2

g/P )IP ) with b and ε independent.
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Two notes: first, we can in general have an arbitrary covariance for b, but in genetics we typically assume
a diagonal covariance. Second, this standardization / identity covariance implicitly makes a modelling
assumption that per-SNP heritability does not depend on MAF. There is theory to relax this assumption,
which is explored in Section 6.2.

If we “integrate out” b, we have

Zb|σ2
g ∼ N (0, (σ2

g/P )ZZT ), (44)

Zb+ ε|σ2
g , σ

2
e ∼ N (0, (σ2

g/P )ZZT + σ2
eIN )), (45)

Y |β, σ2
g , σ

2
e ∼ N (Xβ, (σ2

g/P )ZZT + σ2
eIN )), (46)

where we have used (7). Define

V (σ2
g , σ

2
e) = (σ2

g/P )ZZT + σ2
eIN . (47)

Then the log-likelihood of the parameters is

l(β, σ2
g , σ

2
e |X,Y, Z) = −1

2
(Y −Xβ)TV −1(σ2

g , σ
2
e)(Y −Xβ)− 1

2
ln |V (σ2

g , σ
2
e)|. (48)

A Bayesian approach would place priors on σ2
g , σ

2
e , and possibly β. Without priors, we need to rely on

point estimates. Maximum likelihood for β gives:

β̂ = (XTV −1(σ̂2
g , σ̂

2
e)X)−1XTV −1(σ̂2

g , σ̂
2
e)Y, (49)

where σ̂2
g , σ̂

2
e are desired point estimates. Compare with the top of p. 1712 of [6]. σ̂2

g and σ̂2
e can also be

obtained by numerical optimization of the log-likelihood, but the results are biased; thus REML is used
instead.

4 REML Interlude

TODO: move this material to an appendix?
To proceed further, it is important to actually understand REML. We present results using REML on

three examples. Each time, we revisit a linear algebra paradigm and increase its generality. This presentation
is not for the faint-hearted, but once understood, it covers REML in the most general fashion.

4.1 Sample Variance

We wish to derive the distribution of the sample variance and show it is independent of the sample mean.
Our model is

X ∼ N (µ1N , σ
2IN ),

where X and 1N are column vectors of size N , and µ and σ2 are unknown parameters. As an example, let’s
take N = 5!1 Let

µ̂ =
x1 + . . .+ x5

5
,

σ̂2 =
(x1 − µ̂)2 + . . .+ (x5 − µ̂)2

4
.

It’s quite easy to show that µ̂ ∼ N (µ, σ2/N). But massaging the terms of σ̂2 to get what we want is a
notational challenge, and it turns out to be clearer to introduce matrices.2 Specifically, we introduce the

1If this worries you, note that estimating the sample mean is the same as a linear model with only an intercept, and use the
more general results derived in the next section.

2Casella and Berger resort to a proof by induction.
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Helmert matrix, which is an orthonormal matrix with first column pointing in the direction (1, . . . , 1)T . For
N = 5, the unnormalized Helmert matrix is

G5 =


1 1 1 1 1
1 −1 1 1 1
1 0 −2 1 1
1 0 0 −3 1
1 0 0 0 −4

 .
It’s easy to see that any two columns are orthogonal, and it should also be easy to see how to continue the
pattern for larger N . We can then normalize the columns to each have norm 1, obtaining:

H5 =


1/
√

5 1/
√

2 1/
√

6 1/
√

12 1/
√

20

1/
√

5 −1/
√

2 1/
√

6 1/
√

12 1/
√

20

1/
√

5 0 −2/
√

6 1/
√

12 1/
√

20

1/
√

5 0 0 −3/
√

12 1/
√

20

1/
√

5 0 0 0 −4/
√

20

 .
H5 is an orthonormal matrix, because the columns were originally orthogonal and have now been normalized.
This gives us the property that H5H

T
5 = I5, where I5 is the identity matrix. So in particular,

XTX = XT (H5H
T
5 )X = (HT

5 X)T (HT
5 X). (50)

Just to make things more explicit, here is HT
5 X:

HT
5 X =


1/
√

5 1/
√

5 1/
√

5 1/
√

5 1/
√

5

1/
√

2 −1/
√

2 0 0 0

1/
√

6 1/
√

6 −2/
√

6 0 0

1/
√

12 1/
√

12 1/
√

12 −3/
√

12 0

1/
√

20 1/
√

20 1/
√

20 1/
√

20 −4/
√

20



x1
x2
x3
x4
x5

 =


(x1 + x2 + x3 + x4 + x5)/

√
5

(x1 − x2)/
√

2

(x1 + x2 − 2x3)/
√

6

(x1 + x2 + x3 − 3x4)/
√

12

(x1 + x2 + x3 + x4 − 4x5)/
√

20

 .

So (50), written out explicitly, becomes

5∑
i=1

x2i = 5µ̂2 +
1

2
(x1 − x2)2 +

1

6
(x1 + x2 − 2x3)2 +

1

12
(x1 + x2 + x3 − 3x4)2 +

1

20
(x1 + x2 + x3 + x4 − 4x5)2.

Notice that the first entry of H5X is
√

5µ̂; in general it will be
√
Nµ̂. The sum of squares of the remaining

terms is (
N∑
i=1

x2i

)
−Nµ̂2 =

(
N∑
i=1

(xi − µ̂)2 + 2xiµ̂− µ̂2

)
−Nµ̂2

=

(
N∑
i=1

(xi − µ̂)2

)
+ 2

(
N∑
i=1

xi

)
µ̂− 2Nµ̂2

=

N∑
i=1

(xi − µ̂)2

= (N − 1)σ̂2.

So in our case of N = 5,

4σ̂2 =
1

2
(x1 − x2)2 +

1

6
(x1 + x2 − 2x3)2 +

1

12
(x1 + x2 + x3 − 3x4)2 +

1

20
(x1 + x2 + x3 + x4 − 4x5)2.

Given that the xi are i.i.d. N (µ, σ2), it can be seen that each of these four terms is the square of a N (0, σ2)
random variable. Now this is where things get interesting. Our initial vector X was an isotropic (spherically
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symmetric) Gaussian centered at (µ, . . . , µ), and multiplying by the orthonormal matrix HT
N corresponds to

a rotation around the origin. Thus, the new vector HT
NX will also be an isotropic Gaussian, with the same

covariance σ2IN and centered this time at (
√
Nµ̂, 0, . . . , 0). This means that each of the entries of HT

NX is a
N (0, σ2) variable and independent from all the others (uncorrelated⇔ independent for normals). Therefore,
we can combine the squares of the independent N (0, σ2) random variables to get that

(N − 1)σ̂2

σ2
∼ χ2

N−1,

and additionally, we see that σ̂2 is independent from the first entry of HT
NX, and hence is independent from

µ̂.

4.1.1 Going more general

At the moment, our derivation relies on Helmert matrices, which may seem a bit unmotivated. In fact, the
same argument holds for a general class of N ×N matrices that include HN . Let 1N be the column vector
of all ones, so that the first column of HN is 1N/

√
N = v1. Let v2, . . . , vn be additional vectors such that

v1, . . . , vN form an orthonormal basis of RN . Then the matrix V with ith column vi (this generalizes HN )
is orthonormal, so V TV = V V T = IN . We also have the identity,

IN = V V T =
[
v1 V2:N

] [ vT1
V T2:N

]
= v1v

T
1 + v1V

T
2:N + V2:Nv

T
1 + V2:NV

T
2:N = v1v

T
1 + V2:NV

T
2:N . (51)

Using this, our earlier decomposition generalizes to

N∑
i=1

x2i = XTX = XT (v1v
T
1 + V2:NV

T
2:N )X = (vT1 X)T (vT1 X) + (V T2:NX)T (V T2:NX)

= µ̂2/N + (V T2:NX)T (V T2:NX).

Since X ∼ N (µ1N , σ
2IN ), by (7),

V T2:NX ∼ N (µV T2:N1N , V
T
2:N (σ2IN )V2:N ) = N (0N−1, σ

2IN−1),

by the orthogonality of v1 = 1N/
√
N and the other vi. So µ̂ is a rescaled version of ||vT1 X||22, σ̂2 is a

rescaled version of ||V T2:NX||22 whose distribution can be worked out as earlier, and the two estimators are
independent.

4.2 Linear Model

Consider the linear model from earlier:

Y = Xβ + ε,

ε ∼ N (0, σ2IN ),

where X (N ×M) is fixed and known, Y (N × 1) is known, and we have unknown parameters β (M × 1)
and σ2. Assume M < N and X has rank M .

Let v1, v2, . . . , vN−M be a set of orthonormal vectors that live in the subspace col(X)⊥ = null(XT ) ⊂ RN ;
these can be constructed using Gram-Schmidt orthogonalization. Let V be the N × (N −M) matrix with
ith column vi. Consider the identity:

IN = X(XTX)−1XT + V V T . (52)

The first term on the right is a projection operator onto the subspace col(X), and the second term is a
projection operator onto col(X)⊥ = col(V ) (note that it has the same form as the first term, but V TV =

11



IN−M so we can simplify). This proves (52), which is a generalization of (51). Using it, we can multiply
both sides of Y = Xβ + ε by V V T to get:

V V TY = V V TXβ + V V T ε,

(IN −X(XTX)−1XT )Y = 0 + V V T ε,

Y −Xβ̂ = V V T ε.

If we extend our vectors v1, . . . , vN−M−1 to a full orthonormal basis v1, . . . , vN of RN , we can write

ε = δ1v1 + . . .+ δNvN ,

where each δi
i.i.d.∼ N (0, σ2). Then

V V T ε = δ1v1 + . . .+ δN−MvN−M .

Hence
||Y −Xβ̂||22 = ||V V T ε||22 = δ21 + . . .+ δ2N−M .

Denoting the left hand side as RSS, the residual sum of squares, and taking expectations, we have

E(RSS) = (N −M)σ2.

Hence our earlier estimator of σ2 from (32) is unbiased:

E
(
σ̂2
)

= E

(
RSS

N −M

)
=

(N −M)σ2

N −M
= σ2.

More generally,

σ̂2 =
RSS

N −M
=
σ2(δ21 + . . .+ δ2N−M )

N −M
,

so
(N −M)σ̂2/σ2 ∼ χ2

N−M .

This is (37) and forms the first part of Casella / Berger 11.3.3, which we needed to derive the linear model

t-test. The second part is to show that σ̂2 is independent of β̂. Note that σ̂2 is a deterministic function of
the stochastic variables δ1, . . . , δN−M , so it is independent of any deterministic function of the limited set of
variables δN−M+1, . . . , δN , since the δi are i.i.d. From writing

β̂ = (XTX)−1XT (Xβ + ε)

= β + (XTX)−1XT ε

= β + (XTX)−1(0 +XT δN−M+1vN−M+1 + . . .+XT δNvN ),

we have this desired property.

4.3 Mixed Model

From Sections 4.1 and 4.2, we have encountered the key ideas of REML. In each case, we were trying to
estimate an unknown variance, and by multiplying our data by an orthonormal matrix, we could decompose
our variance estimator into a function of independent normal random variables. Perhaps because the modi-
fications of REML in these cases – changing a division by N to N − 1 for sample variance and N −M for
the linear model – are simple and “intuitive”3, the details of the REML derivation are frequently skipped in
textbooks.

In contrast, the results of REML for the mixed model do not follow from a quick modification from the
maximum likelihood case. In this context, where the results are less intuitive, having the entire machinery
we have developed proves essential.

3The intuition usually given is that of limiting degrees of freedom.
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4.3.1 A Lemma (Searle Casella McCulloch M.4f)

4.3.2 REML likelihood

Similar to the case of the linear model, we assume that X is full rank (has rank M) and multiply both sides
of the linear mixed model equation by the projection operator IN −X(XTX)−1XT :

Y = Xβ + Zb+ ε,(
IN −X(XTX)−1XT

)
Y = 0 +

(
IN −X(XTX)−1XT

)
(Zb+ ε).

Recall that
Zb+ ε|σ2

g , σ
2
e ∼ N (0, (σ2

g/P )ZZT + σ2
eIN )) = N (0, V (σ2

g , σ
2
e)).

So (
IN −X(XTX)−1XT

)
Y ∼ N (0,

(
IN −X(XTX)−1XT

)
V (σ2

g , σ
2
e)
(
IN −X(XTX)−1XT

)T
),

where the normal distribution is a degenerate one. Equivalently,

KKTY ∼ N (0,KKTV (σ2
g , σ

2
e)KKT ),

where K is N × N −M consisting of orthonormal columns with KTX = 0. Now, because V is positive
definite, it admits a symmetric matrix square root V 1/2. Notice that (V 1/2K)T (V −1/2X) = 0, so (skipping
many steps and referring to Searle M.4f), we have:

KKT (KKTV KKT )+KKT = V −1 − V −1X(XTV −1X)−1XTV −1.

([7] calls the right hand side P .) Recall that

β̂ = (XTV −1(σ̂2
g , σ̂

2
e)X)−1XTV −1(σ̂2

g , σ̂
2
e)Y,

so our new log likelihood is

lREML(σ2
g , σ

2
e |X,Y, Z) = −1

2
(KKTY )T (KKTV KKT )+KKTY − 1

2
ln |KKTV KKT |+

= −1

2
Y TV −1Y +

1

2
Y TV −1X(XTV −1X)−1XTV −1Y − 1

2
ln |KKTV KKT |+

= −1

2
Y TV −1(Y −Xβ̂)− 1

2
ln |KKTV KKT |+,

where |A|+ refers to the pseudo-determinant. Note:

(Xβ̂)TV −1(Y −Xβ̂) = Y TV −1X(XTV −1X)−1XTV −1Y − Y TV −1X(XTV −1X)−1XTV −1X(XTV −1X)−1XTV −1Y

= Y TV −1X(XTV −1X)−1XTV −1Y − Y TV −1X(XTV −1X)−1XTV −1Y

= 0

Hence,

lREML(σ2
g , σ

2
e |X,Y, Z) = −1

2
Y TV −1(Y −Xβ̂)− 1

2
ln |KKTV KKT |+

= −1

2
(Y −Xβ̂)TV −1(Y −Xβ̂)− 1

2
ln |KKTV KKT |+.

Finally, it remains to show that

ln |KKTV KKT |+ = ln |V |+ ln |XTV −1X| − ln |XTX|.

How? V is N ×N , XTX and XTV −1X are M ×M , KKTV KKT is N ×N but of rank N −M . Since we
specified K to have orthonormal columns, I think we can write

ln |KKTV KKT |+ = ln |KTV K|.
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Aha! Consulting Mick O’Neill’s notes ([8], https://www.stats.net.au/Maths_REML_manual.pdf), we want
to use the block matrix determinant formulas found here: https://en.wikipedia.org/wiki/Determinant#
Block_matrices. We express this in a basis consisting of the columns of K and the columns of X̃, where
X̃ is an orthonormal basis of the column space of X. The block matrix determinant can be written in this
basis:

|V | = |INV IN | = |(KKT + X̃X̃T )V (KKT + X̃X̃T )|

= |(KKTV KKT + X̃X̃TV KKT + X̃X̃T )

(KKT + (KKTV KKT )+KKTV X̃X̃T + X̃X̃TV X̃X̃T − X̃X̃TV KKT (KKTV KKT )+KKTV X̃X̃T )|

= |KKTV KKT |+ · |X̃X̃TV X̃X̃T − X̃X̃TV KKT (KKTV KKT )+KKTV X̃X̃T |+
= |KTV K| · |X̃TV X̃ − X̃TV KKT (KKTV KKT )+KKTV X̃|

= |KTV K| · |X̃TV X̃ − X̃TV (V −1 − V −1X(XTV −1X)−1XTV −1)V X̃|

= |KTV K| · |X̃TX(XTV −1X)−1XT X̃|

= |KTV K| · |(XTV −1X)−1XT X̃X̃TX|
= |KTV K| · |(XTV −1X)−1XTX|
= |KTV K| · |(XTV −1X)−1| · |XTX|.

Hence
ln |KKTV KKT |+ = ln |KTV K| = ln |V |+ ln |XTV −1X| − ln |XTX|,

and therefore, our final REML expression is (see [6, 9])

lREML(β, σ2
g , σ

2
e |X,Y, Z) = −1

2

(
(Y −Xβ̂)TV −1(σ2

g , σ
2
e)(Y −Xβ̂) + ln |V (σ2

g , σ
2
e)|

− ln |XTX|+ ln |XTV −1(σ2
g , σ

2
e)X|

)
= l(β̂, σ2

g , σ
2
e |X,Y, Z) +

1

2

(
ln |XTX| − ln |XTV −1(σ2

g , σ
2
e)X|

)
.

with β̂ from (49).

4.3.3 Estimation

Maximizing the REML likelihood is a 2D optimization problem, in σ2
g and σ2

e . Many software packages
exist, such as GCTA [7], and a variety of methods can be used. The three that are implemented in GCTA
are average information (AI), Fisher scoring, and expectation maximization (EM). See also FaST-LMM
[9], which uses Brent’s method and presented an influential matrix decomposition approach to speed up
calculations.

4.4 An Application to Covariates

We can derive results for regressing out covariates, aka the Frisch-Waugh-Lovell theorem of econometrics,
using the same machinery.

5 Linear Mixed Model Part 2: Association and Prediction

This part proceeds using empirical Bayes / type 2 maximum likelihood after we have estimated the variance
parameters using REML. Let σ̂2

g and σ̂2
e be the resulting estimates. Define the shorthand

V̂ = V (σ̂2
g , σ̂

2
e) = (σ̂2

g/P )ZZT + σ̂2
eIN ,

and let V be the true underlying covariance. Then we have from earlier:

Y ∼ N (Xβ, V ), (53)

β̂ = (XT V̂ −1X)−1XT V̂ −1Y. (54)
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5.1 Association

We examine (54) as describing an affine transformation on Y , and use (53) and (7) to get:

β̂ ∼ N ((XT V̂ −1X)−1XT V̂ −1(Xβ), (XT V̂ −1X)−1XT V̂ −1V ((XT V̂ −1X)−1XT V̂ −1)T )

= N (β, (XT V̂ −1X)−1XT V̂ −1V V̂ −1X(XT V̂ −1X)−1).

We note that the true covariance V of Y is unobserved. Therefore we make an approximation by substituting
V̂ for V , hoping that this gives correct asymptotic results. The expression for β̂ dramatically simplifies:

β̂ ≈∼ N (β, (XT V̂ −1X)−1).

In the particular case where we are testing a single SNP, X is a column vector of size N , and we have

β̂ − β
ŝe(β̂)

= (β̂ − β)
√
XT V̂ −1X ≈∼ N (0, 1).

To test the null hypothesis β = 0, we can substitute the expression for β̂ to get

XT V̂ −1Y

XT V̂ −1X

√
XT V̂ −1X ≈∼ N (0, 1),

and squaring yields: (
XT V̂ −1Y

)2
XT V̂ −1X

≈∼ χ2
1. (55)

Compare with Eqs. (5) and (7) of [10] or Eq. (2) of [11], which both cite [12].

5.2 Prediction

Consider two identical sets of Eq. (43):

Y1 = X1β + Z1b+ ε1,

Y2 = X2β + Z2b+ ε2.

The interpretation is as follows: the index 1 denotes our training set, and the index 2 denotes our test set.
For set 1, we observe Y1, X1, and Z1: these are used to establish inferences on β and b. For set 2, we observe
X2 and Z2, and want to predict Y2 by extrapolating from the training set. Note that the residuals ε1 and
ε2 are always unobserved. The number of columns of our variables are the same as before, and there are N1

rows for variables in the training set, and N2 rows for variables in the test set.
The best inference for β is the maximum-likelihood estimate given earlier:

β̂ = (XT
1 V̂
−1
1 X1)−1XT

1 V̂
−1Y1.

In the context of prediction, β̂ is called the best linear unbiased estimate (BLUE).
For inference on b, we actually get more than a point estimate. Since we have priors P (b) = N (b|0, (σ2

g/P )IP )
and a restricted likelihood P (Y1|X1, Z1, b), we can get out a posterior:

P (b|Y1, X1, Z1) =
P (b)P (Y1|X1, Z1, b)∫
P (b′)P (Y1|X1, Z1, b′)db′

.

The mean of this posterior, b̂ = E(b|Y1, X1, Z1), is then the best linear unbiased predictor (BLUP).
Putting these two parts together, our final prediction for Y2 becomes:

Ŷ2 = X2β̂ + Z2b̂.

Because we have already explored the maximum-likelihood estimate or BLUE, we now focus on the
BLUP. To ease presentation, we consider the case when there are only random effects, so that the restricted
likelihood becomes just a likelihood:

P (Y1|Z1, b) = N (Y1|Z1b, σ
2
eIN1

).

For simplicity, we will also occassionally drop the subscript 1 when only the training set is being considered.
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5.2.1 SNP or Basis Perspective

Taking Z as always known, we have:

P (b) = N (b|0, (σ2
g/P )IP ), (56)

P (Y |b) = N (Y |Zb, σ2
eIN ). (57)

Thus, we can apply (13) to get

p(b|Y ) = N (b|Ξ{ATΠ−1(Y − 0) + Σ−1µ},Ξ),

where we fill in:

A = Z,

µ = 0,

Σ = (σ2
g/P )IP ,

Π = σ2
eIN ,

Ξ = (Σ−1 +ATΠ−1A)−1 =
{

(P/σ2
g)IP + (1/σ2

e)ZTZ
}−1

.

Performing the substitutions yields:

p(b|Y ) = N
(
b|
{

(P/σ2
g)IP + (1/σ2

e)ZTZ
}−1

(ZTY/σ2
e),
{

(P/σ2
g)IP + (1/σ2

e)ZTZ
}−1)

, (58)

And thus, substituting in σ̂2
g and σ̂2

e from REML, our BLUP is:

b̂ = E(b|Y ) =

(
ZTZ +

Pσ̂2
e

σ̂2
g

IP

)−1
ZTY (59)

=

(
1

N
ZTZ +

Pσ̂2
e

Nσ̂2
g

IP

)−1
ZTY

N
. (60)

There are at least two ways to interpret the above expression. The first form, (59), highlights that what
we are doing is identical to ridge regression, with the ridge parameter being λ = Pσ̂2

e/σ̂
2
g . This makes sense

since our prior on b is equivalent to L2 regularization, and because the posterior mean and posterior mode
for a Gaussian are the same.

In the second form, (60), the expression ZTY/N corresponds to the summary statistics obtained by doing
univariate linear regression of genome-wide SNPs against the phenotype. We then multiply these summary
statistics by a shrinkage matrix to get our optimal predictor. Within this shrinkage matrix, ZTZ/N is
exactly the LD matrix or covariance matrix between SNPs. This is the presentation followed in the LDPred
paper [13].

5.2.2 Sample or Kernel Perspective

Now let us go back to considering a training and test set. Once we have learned b̂ from the training set, our
prediction on the test set is:

Ŷ2 = Z2b̂ = Z2

(
ZT1 Z1 +

Pσ̂2
e

σ̂2
g

IP

)−1
ZT1 Y1.

Define

k =
σ̂2
g

Pσ̂2
e

. (61)
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We rewrite the matrix inverse using the matrix inversion lemma (3):(
ZT1 Z1 +

IP
k

)−1
=

(
IP
k

)−1
−
(
IP
k

)−1
ZT1

(
IN1 + Z1

(
IP
k

)−1
ZT1

)−1
Z1

(
IP
k

)−1
= kIP − k2ZT1

(
IN1

+ kZ1Z
T
1

)−1
Z1.

So

Ŷ2 = Z2

{
kIP − k2ZT1

(
IN1 + kZ1Z

T
1

)−1
Z1

}
ZT1 Y1

=
{
kZ2Z

T
1 − kZ2Z

T
1

(
IN1 + kZ1Z

T
1

)−1
kZ1Z

T
1

}
Y1

=
{
kZ2Z

T
1 − kZ2Z

T
1

(
IN1 + kZ1Z

T
1

)−1 (
IN1 + kZ1Z

T
1 − IN1

)}
Y1

=
{
kZ2Z

T
1 − kZ2Z

T
1 + kZ2Z

T
1

(
IN1 + kZ1Z

T
1

)−1}
Y1

= kZ2Z
T
1

(
IN1

+ kZ1Z
T
1

)−1
Y1. (62)

What is surprising is that the matrices Z1 and Z2 only enter into the expression via the forms Z1Z
T
1 and

Z2Z
T
1 . These matrices, N1 by N1 and N2 by N1 respectively, occur in sample space, not in SNP space. In

fact, they represent a SNP-based similarity among samples. If we form Z1Z
T
1 /P , then we have exactly the

kinship matrix or genome relatedness matrix (GRM).
So if we had Y1 and wanted to predict Y2, it turns out that the matrices Z1 and Z2 themselves are not

needed. Once we have estimates σ̂2
g and σ̂2

e , all we need is a kernel function K(z, z′) describing how similar

two samples are. In this case, we are using a linear kernel, K(z, z′) = zT z′/P , where z and z′ are vectors
of size P containing genome-wide SNP data for the two samples. This kernel-based perspective is also how
Gaussian processes are motivated from Bayesian linear regression (see Bishop Sections 3.3.3 and 6.4), and
often more complex kernels are then used.

5.2.3 Connection with Association

To connect our results on mixed-model prediction with association, let us first consider prediction on the
training set. We can substitute Z1 for Z2 in (62) to get:

Ŷ1 = kZ1Z
T
1

(
IN1

+ kZ1Z
T
1

)−1
Y1,

and work from there. Alternatively, here is another approach I came up with, which uses the Taylor expansion
for (I +A)−1. We have:

Ŷ1 = Z1b̂ = Z1

(
ZT1 Z1 +

IP
k

)−1
ZT1 Y1

= kZ1

(
IP + kZT1 Z1

)−1
ZT1 Y1

= kZ1

(
IP − kZT1 Z1 + (kZT1 Z1)2 − · · ·

)
ZT1 Y1

=
(
kZ1Z

T
1 − (kZ1Z

T
1 )2 + (kZ1Z

T
1 )3 − · · ·

)
Y1

=
(
IN1
−
(
IN1
− kZ1Z

T
1 + (kZ1Z

T
1 )2 − · · ·

))
Y1

=
(
IN1 −

(
IN1 + kZ1Z

T
1

)−1)
Y1.

Now, recall that we had defined

V̂ = (σ̂2
g/P )ZZT + σ̂2

eIN

= σ̂2
e

(
IN1

+
σ̂2
g

Pσ̂2
e

Z1Z
T
1

)
= σ̂2

e

(
IN1

+ kZ1Z
T
1

)
.
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Thus,

Ŷ1 =
(
IN1
−
(
IN1

+ kZ1Z
T
1

)−1)
Y1

=
(
IN1
− (V̂ /σ̂2

e)−1
)
Y1

= Y1 − σ̂2
e V̂
−1Y1.

Hence if we form the residuals from BLUP on the training set, and call these Ỹ (we now get rid of the
subscript 1), we have

Ỹ = Y − Ŷ = σ̂2
e V̂
−1Y. (63)

Earlier we derived a chi-squared test (55) for association of a fixed effect β for a single SNP X:

(XT V̂ −1Y )2

XT V̂ −1X
≈∼ χ2

1.

If we substitute our formula (63) for the BLUP residuals into this expression, we have:(
XT (Ỹ /σ̂2

e)
)2

XT V̂ −1X
=

(
XT Ỹ /N

)2
XT V̂ −1X(σ̂2

e/N)2
≈∼ χ2

1.

The numerator of this expression is precisely the square of a “summary statistic” between a standardized
SNP X and the residual phenotype Ỹ from BLUP. Indeed, the BOLT-LMM paper [10] observes that “the
χ2
BOLT−LMM−inf statistic is equivalent to computing (and then calibrating) the squared correlations between

SNPs xtest and BLUP residuals” (Online Methods p. 1). BOLT-LMM additionally notes that “in human
genetics applications, the denominator ... x′testV

−1xtest, is nearly indepedent of the SNP xtest being tested”
(Online Methods p. 1, with a citation to [11]). This simplifies the computation from performing a matrix-
vector product per SNP to estimating a constant, which they do by sampling 30 pseudorandom SNPs. The
resulting statistic is

χ2
BOLT−LMM−inf =

1

cinf

N
(
XT Ỹ

)2
(XTX)(Ỹ T Ỹ )

.

According to values in the BOLT-LMM supplement (Supplementary Tables 14 and 15), the estimated values
of cinf are often very close to but slightly less than 1. If we set cinf = 1, we get the GRAMMAR test
statistic [14], which [15] observes is slightly underpowered. The idea to estimate cinf was introduced in the
GRAMMAR-Gamma paper [11].

5.2.4 Alternate Derivation

Here we offer a shorter derivation of (62) that does not require ever entering into SNP / basis space. Recalling
that b ∼ N (0, (σ2

g/P )IP ), we have the properties:

E(Y1) = E(Z1b+ ε1) = 0,

E(Y2) = E(Z2b+ ε2) = 0,

Var(Y1) = Var(Z1b+ ε1) = Var(Z1b) + Var(ε1) =
σ2
g

P
Z1Z

T
1 + σ2

eIN1
,

Var(Y2) = Var(Z2b+ ε2) = Var(Z2b) + Var(ε2) =
σ2
g

P
Z2Z

T
2 + σ2

eIN2 ,

cov(Y1, Y2) = cov(Z1b+ ε1, Z2b+ ε2) = cov(Z1b, Z2b) = Z1Var(b)ZT2 =
σ2
g

P
Z1Z

T
2 .
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Thus, we can model the joint distribution of Y1 and Y2 as a multivariate normal satisfying[
Y1
Y2

]
∼ N

([
0
0

]
,

[
Σ11 Σ12

Σ21 Σ22

])
= N

([
0
0

]
,

[
σ2
g

P Z1Z
T
1 + σ2

eIN1

σ2
g

P Z1Z
T
2

σ2
g

P Z2Z
T
1

σ2
g

P Z2Z
T
2 + σ2

eIN2

])
.

From (10), we then have

p(Y2|Y1) = N (Y2|µ2 + Σ21Σ−111 (Y1 − µ1),Σ22 − Σ21Σ−111 Σ12),

for which our mean is

E(Y2|Y1) = Σ21Σ−111 Y1

=
σ2
g

P
Z2Z

T
1

(
σ2
g

P
Z1Z

T
1 + σ2

eIN1

)−1
Y1,

which matches (62), except that that expression has used inferences for σ̂2
g and σ̂2

e in place of their true
values.

This is more similar to the presentation seen in Bishop Chs. 3 and 6. Note that to derive (10), Bishop
uses a matrix identity (2.76) which they call the “matrix inversion formula” on p. 91. Proving that turns
out to be of comparable difficulty to proving the matrix inversion lemma (3), which we used in our earlier
derivation.

5.2.5 Small N , large P limit

The BLUP on the training set is:

Ŷ =
σ̂2
g

P
ZZT

(
σ̂2
g

P
ZZT + σ̂2

eIN

)−1
Y.

If N is small and individuals are randomly sampled from the population, then we expect no close relatives.
In this case, especially as we take P to be large, we expect ZZT ≈ PIN . Hence

Ŷ ≈ σ̂2
gIN

(
σ̂2
gIN + σ̂2

eIN
)−1

Y

=
σ̂2
g

σ̂2
g + σ̂2

e

Y

= ĥ2Y.

In other words, regardless of the phenotype Y , we obtain a BLUP that is a rescaled version of Y .

6 Notes on Modern Genetics

6.1 LDpred

6.2 Expected Heritability and MAF

Negative selection, LDAK α parameter

6.3 Non-infinitesimal Priors

6.4 LD Score Regression and Cousins
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